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Abstract 
 

A large part of the controller’s workload comes from conflict detection and monitoring. The 
SESAR project aims at giving tools (such as MTCD) to air traffic controller that will lighten 
this part of their burden and help them to have a more strategic planning activity while letting 
the computer take into account some of those “housekeeping” tasks. 

In this article we explain how the conflict detection task can be analyzed mathematically, and 
what can be learned from this theoretical study. We will also show that, whatever the quality 
of MTCD tools, because some uncertainties like wind prediction errors are unavoidable, even 
a perfect MTCD will always detect more conflict that the actual number of conflicts that 
really occur.    

 

Understanding conflict detection from a mathematical point of view 
Figure 1 shows a classical two aircraft conflict. Aircraft on the lower segment flies at 
speed 𝑣1, and aircraft on the upper segment flies at speed 𝑣2. The angle of incidence is α: 

 

Figure 1 



We use the auxiliary variables 𝑟 = 𝑣2
𝑣1

, and D is the separation standard. Let’s suppose that we 

have an aircraft 𝑝1 on the lower segment at a distance 𝑙1 of the crossing point. We want to 
know which interval on the upper segment will contain conflicting aircraft with this one. Let’s 
assume that an aircraft 𝑝2 is at distance 𝑙2 of the crossing point. Then we have: 

𝑥1 = 𝑣1𝑡 − 𝑙1 

𝑦1 = 0 

𝑥2 = cos(𝛼) (𝑣2𝑡 − 𝑙2) 

𝑦2 =  sin(𝛼) (𝑣2𝑡 −  𝑙2) 

If the two aircraft are in conflict, there must exist t such that the following inequality is 
satisfied: 

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ≤  𝐷2 

This is a second degree inequality in t. The inequality will only be satisfied if the equation: 

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 −  𝐷2 = 0 

has at least one solution. So the discriminant of the equation: 

𝛥 = 𝐷2(𝑣12 − 2𝑣1𝑣2 cos(𝛼) + 𝑣22) − sin2 𝛼 (𝑙2𝑣1 − 𝑙1𝑣2)2  

must be positive. The discriminant is itself a polynomial of degree 2 in 𝑙2. Thus, the distances 
𝑙2 which satisfy 𝛥 ≥ 0 belong to a single interval, and the extremal points 𝑟1 and 𝑟2 of the 
interval are the roots of the equation 𝛥 = 0: 

𝑟1 = 𝑙1
𝑣2
𝑣1

+ 𝐷
�1 + (𝑣2𝑣1

)2 − 2(𝑣2𝑣1
) cos𝛼

sin𝛼
 

𝑟2 = 𝑙1
𝑣2
𝑣1
− 𝐷

�1 + (𝑣2𝑣1
)2 − 2(𝑣2𝑣1

) cos𝛼

sin𝛼
 

Let’s understand this result. It is just a mathematical way to say that if aircraft 𝑝1is at a 
distance 𝑙1 of the conflict point on the horizontal segment, then all aircraft which are at a 
distance between 𝑟1 and 𝑟2 on the other segment will be in conflict with 𝑝1. 

 Let’s make a simple numerical application. If aircraft 𝑝1 is flying at 400kts and is at a 
distance of 60Nm of the conflict point, aircraft 𝑝2 is flying at 380kts, the crossing angle is 45° 
and the separation standard is 5Nm then we have: 

𝑟1 = 𝑙1
𝑣2
𝑣1

+ 𝐷
�1 + (𝑣2𝑣1

)2 − 2(𝑣2𝑣1
) cos𝛼

sin𝛼
= 60

380
400

+ 5
�1 + (380

400)2 − 2 380
400 cos 45

sin 45
= 62 



 

𝑟2 = 𝑙1
𝑣2
𝑣1
− 𝐷

�1 + (𝑣2𝑣1
)2 − 2(𝑣2𝑣1

) cos𝛼

sin𝛼
= 60

380
400

− 5
�1 + (380

400)2 − 2 380
400 cos 45

sin 45
= 52 

So each aircraft 𝑝2which is closer to the crossing point than 52Nm will safely pass in front of 
𝑝1 and each aircraft 𝑝2which is further than 62Nm of the crossing point will safely pass 
behind 𝑝1. All aircraft inside the [52,62] Nm segment will be in conflict with 𝑝1. Of course all 
of this makes sense only if there are absolutely no uncertainties on the future trajectories of 
aircraft. 

A very interesting value is the length of the segment, which is the difference between the two 
roots: 

𝐿 = 𝑟1 − 𝑟2 = 2𝐷
�1 + (𝑣2𝑣1

)2 − 2(𝑣2𝑣1
) cos𝛼

sin𝛼
= 2 ∗ 5

�1 + (380
400)2 − 2 380

400 cos 45

sin 45
= 10 

This means that for any aircraft 𝑝1we have to monitor a length of 22Nm on the upper 
segment. Let’s now use 𝑟 = 𝑣2

𝑣1
  (the ratio of speeds) and let’s express the length of the 

segment in number of separation standard: 

𝐿
𝐷

= 𝑓(𝑟,𝛼) = 2
√1 + 𝑟2 − 2𝑟 cos𝛼

sin𝛼
= 2.1 

This means that if aircraft are as densely packed as possible on the upper segment (they 
follow each other at a D=5Nm distance in a “miles in trail” procedure), aircraft 𝑝1will be in 
conflict with roughly 2 aircraft. Of course, if the density of the traffic is half the maximal 
density, there will only be 1 aircraft in conflict with 𝑝1 on the average, etc. This formula is 
also interesting to understand the importance of the crossing angle. If α=90°, we have roughly 
3 aircraft in conflict with 𝑝1 instead of 2. 

We notice a few interesting things:  

- The function does not depend on 𝑙1. This means that, if information was perfect 
and there was no uncertainty of any kind, conflicts could be exactly predicted as 
soon as we know the position of the aircraft, even if they are very far away from 
the crossing point. This relies of course on the very strong and quite unrealistic 
assumption that we know the exact trajectory of each aircraft and that aircraft are 
going to perfectly “stick” to their trajectories.   

- The minimum of 𝑓(𝑟,𝛼) is reached for 𝑟 =  𝑐𝑜𝑠(𝛼), and we have 𝑓(𝑐𝑜𝑠(𝛼),𝛼) =
2. This is independent of α and perfectly normal: if we project the situation to the 
state where 𝑝1is at the crossing point, all aircraft 𝑝2 at a distance −𝐷 <  𝑑 <  𝐷 
of the crossing point are in conflict with 𝑝1, and if they are exactly separated by 
one separation standard, there will be exactly two aircraft between –𝐷 and 𝐷. 



 

Figure 2 

We represent on figure 2 a contour plot of the above function. The horizontal axis is 𝑟 (the 
ratio of speeds 𝑟 = 𝑣2

𝑣1
); we use values of 𝑟 ranging from 0.8 to 1.2. The vertical axis is the 

angle of incidence (in degrees), from 30 degrees to 140 degrees. We do not represent values 
above 140 degrees or below 30 degrees, as they exhibit pathological behavior. The darkest 
part of the contour plot represents segment lengths ranging from 2 to 2.5 separation standard. 
Each line represents one half separation standard more. For example, if the ratio of speed is 
0.8 and the crossing angle is less than 85°, then the length of the upper segment to monitor for 
a given aircraft 𝑝1 is around 2*5=10Nm. But if the crossing angle is 120°, the length of the 
segment is slightly more than 3.5*5=17.5Nm. If the crossing angle is still 120° but the ratio of 
speed is 1.2 then the length to monitor is slightly less than 4.5*5=22.5Nm. 

One should naively expect the function to be symmetrical with𝑓(𝑟,𝛼) = 𝑓(1/𝑟,𝛼), as the 
problem looks symmetrical: aircraft on the upper segment should “see” the same number of 
conflicts with aircraft on the lower segment than aircraft on the lower segment with aircraft on 
the upper segment. Actually, we have: 𝑓(1/𝑟,𝛼) = 𝑟 𝑓(1/𝑟,𝛼). This can be intuitively 
understood on a simple example. 

Let’s suppose that aircraft on the upper and the lower segment are equally spaced by exactly 
one separation standard (maximal rate). Each aircraft on the lower segment will detect 
roughly 𝑓(𝑟,𝛼) conflicts. In a given time period T, 𝑛1  =  𝑇 𝑥 (𝑣1/𝐷) aircraft will pass on the 
lower segment, and the total number of conflicts detected by aircraft on the lower segment 
will be 𝑛1 𝑓(𝑟,𝛼). During the same time period T, 𝑛2  =  𝑇 𝑥 (𝑣2/𝐷) aircraft on the upper 
segment will detect 𝑛2 𝑓(1/𝑟,𝛼) conflicts. These two numbers have to be equal, so: 
𝑛1 𝑓(𝑟,𝛼)  =  𝑛2 𝑓(1/𝑟,𝛼). By replacing: 



𝑓(𝑟,𝛼) =
𝑇 𝑣2𝐷
𝑇 𝑣1𝐷

𝑓 �
1
𝑟

,𝛼� =
𝑣2
𝑣1
𝑓 �

1
𝑟

,𝛼� = 𝑟 𝑓(
1
𝑟

,𝛼) 

The 𝑓(𝑟,𝛼) function is an interesting function because it gives a lower bound on the 
“number” of conflicts that a controller or an air traffic control system would have to solve if 
everything was perfect, with total information and no uncertainty. We are now going to 
explain what happens when uncertainties are in our way. 

 

Why is uncertainty important 
A large part of the controller’s workload comes from trajectory monitoring and conflict 
detection. Different studies show that only one conflict out of three to five detected and 
monitored would really result in separation violation. Granger shows in his Ph. D. [Granger1] 
that, on simulated traffic on a busy day of 1999 in the French airspace above FL 320, when 
the uncertainties on trajectory predictions increase, the number of necessary maneuvers also 
increases dramatically. For example, without uncertainty, 972 conflicts occur and 1041 
maneuvers are required to solve them. When you consider a 2% uncertainty on ground speed 
and 5% uncertainty on climbing or descending rate, 2461 maneuvers are necessary to solve 
the detected conflicts. The number of maneuvers rises to 3881 maneuvers for a 5% 
uncertainty on ground speed and 15% uncertainty on vertical speed. It reaches 6819 
maneuvers with 10% ground speed and 30% vertical speed uncertainties. This phenomenon is 
well known by controllers who have to monitor and even sometimes solve conflicts that will 
often never occur: their priority is safety and they have to take into account uncertainty 
margins the best they can. 

Another statistical study [Alliot1] computes on real data simulation in the french airspace the 
influence of the vertical and ground speed errors on conflict probe. The formula which 
summarizes this study is: 

𝑁𝑑/𝑁0 =  1 +  𝑡𝑤 (3.5 𝑒𝑔  +  0.5 𝑒𝑉 ) 

where 𝑁𝑑/𝑁0 stands for the ratio of conflicts detected over conflicts really happening. 𝑡𝑤 is 
the prediction anticipation, 𝑒𝑔 the ground speed error (in percentage) and 𝑒𝑉 the vertical speed 
error (in percentage also).  

This is directly the consequence of uncertainties affecting aircraft trajectories, of the 
incomplete information regarding aircraft speed and intentions, and of human beings inability 
to handle complex numerical mathematic to compute precisely trajectory predictions. Of 
course these results are statistical. They depend on the geometry of the airspace monitored, on 
the traffic density and shape, on the anticipation chosen, and on numerous other factors. In the 
next part of this paper we are going to develop the underlying mathematical model that 
explains these results. 



We will study in detail in the next section the special problem of wind, which is an 
unavoidable uncertainty. We are first going to say here a few words about uncertainties which 
are supposed to be avoidable. 

On the following figure, we show a classical example of a detection/resolution process: 

 

Figure 3 

  

Thus, as stated above, a controller has to monitor and has to plan solving a much larger 
number of conflicts than the theoretical number found in the above section.  

The advocates of MTCD tools claim that it is possible to enhance the efficiency of conflict 
detection by (a) relying on the computer to build better trajectory prediction and (b) enhance 
further these predictions by using information downloaded from the aircraft FMS. 

Regarding hypothesis (a) a computer is, of course, much more efficient at doing calculations 
than a human being. Moreover, it is possible, even if we do not have the FMS information 
available to build correct mathematical models of speed errors and construct MTCD tools 
from these models. For example, we assume that there is an error about the aircraft future 
location because of ground and vertical speed prediction uncertainties. Then, an aircraft is 
represented by a point at the initial time of the conflict detection window.  



 

Figure 4 

In the horizontal plane, the point becomes a line segment in the uncertainty direction (the 
speed direction here (see figure 4 above). The first point of the line “flies” at the maximum 
possible speed, and the last point at the minimum possible speed. These maximal and minimal 
speeds depend of course on the uncertainty chosen: for 5% uncertainty on ground speed, the 
first point will fly at a speed of 1.05 𝑣 and the last point at a speed of 0.95 𝑣, if 𝑣 is the 
nominal speed of the aircraft. When changing direction on a waypoint, the heading of the line 
segment ”fastest point” changes as described. To check separation for two aircraft at time 𝑡, 
we compute the distance between the two line segments modeling the aircraft positions and 
compare it to the separation minima. In the vertical plane, we use a cylindrical modeling. 
Each aircraft has a mean altitude, a maximal altitude and a minimal altitude. To check if two 
aircraft are in conflict, the minimal altitude of the higher aircraft is compared to the maximal 
altitude of the lower aircraft.  

It is possible to rewrite the equations of the previous model and to take into accounts the 
uncertainty of aircraft speeds. The equations become: 

𝑥1 = 𝑣1(1 + 𝑒1)𝑡 − 𝑙1 

𝑦1 = 0 

𝑥2 = cos(𝛼) (𝑣2(1 + 𝑒2)𝑡 − 𝑙2) 



𝑦2 =  sin(𝛼) (𝑣2(1 + 𝑒2)𝑡 −  𝑙2) 

Where 𝑒1 and 𝑒2 represent speed errors for aircraft 1 and 2. The development of this model 
has been done in another paper (see [Alliot1]). We are simply going to present the result 
which gives the additional percentage of conflict to detect and monitor compared to the lower 
bound found in the above section. We use the same notations: 𝑟 stands for the ratio of speeds, 
α is the angle of incidence, 𝐷 the standard separation, 𝑙1 the distance to the crossing point and 
𝑒 the upper bound of the error (in percentage), such that 𝑒1 and 𝑒2 are always in the 
interval [−𝑒, 𝑒]. Then the additional number of conflicts is given by: 

2𝑟 sin𝛼
√1 + 𝑟2 − 2𝑟 cos𝛼

 
𝑙1
𝐷

 𝑒 

Let’s do a numerical application. Both aircraft are flying at 360kts, so r=360/360=1, they are 
crossing with an angle of convergence α=90°, the bound on the speed error 𝑒 = 7% = 0.07, 
𝐷 = 5Nm and we want to detect the conflict 5 minutes before the crossing point so 𝑙1 =
360 ∗ 5

60
= 30Nm. Then: 

2𝑟 sin𝛼
√1 + 𝑟2 − 2𝑟 cos𝛼

 
𝑙1
𝐷

 𝑒 =
2 ∗ 1 ∗ 1

√1 + 1 − 2 ∗ 1 ∗ 0
∗

30
5
∗ 0.07 = 0.60 

So we will detect and monitor 60% more conflict than the number of conflicts that really 
occur. 

If we could download and use the information provided by the FMS then the advocates of 
MTCD tools think that the bound on the error would be extremely small and the number of 
conflicts wrongly detected would be considerably reduced.  

This is only partially true. The FMS can provide a very accurate information on air speed. 
However, for detection purpose, its accuracy on ground speed depends on the accuracy of 
wind prediction. Of course, for resolution purpose, it would be possible to have the FMS enter 
a “closed loop” mode, where he would guarantee a given ETA on the crossing point (this is 
the idea behind the TCSA concept of SESAR). But it is impossible to use this kind of mode 
for each conflict detection, because we would have to compel aircraft to have an ETA for 
each crossing point, which would be much too complex and expensive. For conflict detection, 
even if the FMS provides perfect information on air speed and aircraft intentions, wind 
uncertainties have to be taken into account.  

 

The influence of wind uncertainty on conflict detection 
In this section we are going to build a mathematical model for conflict detection which takes 
into account wind errors. 

In the rest of this paper, we are going to simplify further calculations by doing some 
approximations. First let’s write: 



𝑣2
𝑣1

= 𝑟 = 1 + 𝜀 

We will suppose that ε is small enough (aircraft speeds are quite similar) to discard second 
order quantities. Using the same notation than before, L/D becomes: 

  
𝐿
𝐷

= 2
√1 + 𝑟2 − 2𝑟 cos𝛼

sin𝛼
= 2

�1 + (1 + 𝜀)2 − 2(1 + 𝜀) cos𝛼
sin𝛼

 

If we discard second order terms, and do some Taylor expansions in ε: 

𝐿
𝐷

= 2
�1 + (1 + 𝜀)2 − 2(1 + 𝜀) cos𝛼

sin𝛼
= 2

�2(1 + 𝜀)(1 − cos𝛼)
sin𝛼

= 2 �1 +
𝜀
2
��

2(1 − cos𝛼)
sin(𝛼)2

= 2 �1 +
𝜀
2
��

2
1 + cos𝛼

= (1 +
𝜀
2

)
2

cos𝛼2
 

This gives us a much simpler formula. On figure 5, we have the new curve which is extremely 
similar to the previous one (here the x-axis represents the values of 𝜀 = 1 − 𝑟). Thus the 
approximations seem to be well-founded. 

 

Figure 5 

In the following part of the article, we will neglect without saying second order terms. 

Now let’s suppose that the wind prediction is not perfect and that we have an unknown 
component of the wind defined by W (its module) and θ (its direction) (see figure 6). 



 

Figure 6 

We suppose that aircraft automatically correct their heading by a drifting angle to maintain 
their course, and that they still maintain their air speed but not their ground speed (open loop 
hypothesis). Thus we have: 

𝑣1′ = 𝑣1 + 𝑊 cos𝜃 

𝑣2′ = 𝑣2 + 𝑊 cos(𝜃 + 𝛼) 

We are going to use 𝑤 = 𝑊
𝑣1

 (𝑤 is supposed to be small) and 𝑟′ = 𝑣2′

𝑣1′
= 1 + 𝜀′ 

𝑟′ =
𝑣2′

𝑣1′
= 1 + 𝜀′ =

𝑣2 + 𝑊 cos(𝜃 + 𝛼)
𝑣1 + 𝑊 cos 𝜃

=

𝑣2
𝑣1

+ 𝑊
𝑣1

cos(𝜃 + 𝛼)

1 + 𝑊
𝑣1

cos 𝜃

= (1 + 𝜀 + 𝑤 cos(𝜃 + 𝛼))(1 − 𝑤 cos𝜃) = 1 + 𝜀 + 𝑤(cos(𝜃 + 𝛼) − cos𝜃)

= 1 + 𝜀 − 2𝑤 sin(𝜃 +
𝛼
2

) sin
𝛼
2

 

So now the two roots of the equation are (we use 𝑙 instead of 𝑙1 to simplify the notations): 

𝑟1 = 𝑙(1 + 𝜀′) +
𝐷

cos �𝛼2�
�1 +

𝜀′

2
�

= 𝑙 �1 + 𝜀 − 2𝑤 sin �𝜃 +
𝛼
2
� sin

𝛼
2
� +

𝐷

cos �𝛼2�
(1 +

𝜀
2
−𝑤 sin �𝜃 +

𝛼
2
� sin

𝛼
2

) 

𝑟2 = 𝑙(1 + 𝜀′) −
𝐷

cos �𝛼2�
�1 +

𝜀′

2
�

= 𝑙 �1 + 𝜀 − 2𝑤 sin �𝜃 +
𝛼
2
� sin

𝛼
2
� −

𝐷

cos �𝛼2�
(1 +

𝜀
2
−𝑤 sin �𝜃 +

𝛼
2
� sin

𝛼
2

) 



If we suppose that we know an upper bound 𝑊𝑚 (we will also use 𝑤𝑚 = 𝑊𝑚
𝑣1

) for the wind 

error module, we want to compute 𝐿
′

𝐷
= max𝑤,𝜃 𝑟1−min𝑤,𝜃 𝑟2

𝐷
 with w in [0, 𝑤𝑚] and θ in [0,π]. It 

is easy to see that the maximum of 𝑟1is at 𝑤 = 𝑤𝑚 and 𝜃 = (3𝜋−𝛼)
2

. Thus we have: 

max
𝑤,𝜃

𝑟1 = 𝑙(1 + 𝜀) +
𝐷

cos𝛼2
�1 +

𝜀
2
� + 𝑤𝑚 sin

𝛼
2

(2𝑙 +
𝐷

cos𝛼2
) 

Finding the minimum of 𝑟2is slightly more complex, and we first have to rewrite 𝑟2: 

𝑟2 = 𝑙 �1 + 𝜀 − 2𝑤 sin �𝜃 +
𝛼
2
� sin

𝛼
2
� −

𝐷

cos �𝛼2�
�1 +

𝜀
2
− 𝑤 sin �𝜃 +

𝛼
2
� sin

𝛼
2
�

= 𝑙(1 + 𝜀) −
𝐷

cos𝛼2
�1 +

𝜀
2
� − 𝑤 sin(𝜃 +

𝛼
2

) sin
𝛼
2

(2𝑙 −
𝐷

cos𝛼2
) 

Thus the value of the minimum depends on the sign of (2𝑙 − 𝐷
cos𝛼2

). There are two alternatives: 

- If 𝑙 < 𝐷
2cos𝛼2

 : this is when we are very close to the conflict point. Here we have the 

minimum of 𝑟2for 𝑤 = 𝑤𝑚 and 𝜃 = 3𝜋−𝛼
2

 and : 

min
𝑤,𝜃

𝑟2 = 𝑙(1 + 𝜀) −
𝐷

cos𝛼2
�1 +

𝜀
2
� − 𝑤𝑚 sin

𝛼
2

(2𝑙 −
𝐷

cos𝛼2
) 

We still want to compute: 𝐿
′

𝐷
= max𝑤,𝜃 𝑟1−min𝑤,𝜃 𝑟2

𝐷
. Thus : 

𝐿′

𝐷
=

2

cos𝛼2
�1 +

𝜀
2
� + 2𝑤𝑚 tan

𝛼
2

 

Then the percentage of the increase of the number of conflicts is given by 𝐿
′/𝐷
𝐿/𝐷

 

𝐿′
𝐷
𝐿
𝐷

= 1 + 𝑤𝑚 sin
𝛼
2
�1 −

𝜀
2
� = 1 + 𝑤𝑚 sin

𝛼
2

 

This first case is not very interesting as a simple numerical example will show; 
let’s take D=5Nm and α=45°. Then this case applies if we detect conflict at a 
distance of roughly less than 3Nm to the crossing point which is obviously far too 
late. 
 

- If 𝑙 > 𝐷
2cos𝛼2

 : this is when we are far enough from the conflict point. We have the 

minimum for 𝑤 = 𝑤𝑚 and 𝜃 = 𝜋−∝
2

 and : 

min
𝑤,𝜃

𝑟2 = 𝑙(1 + 𝜀) −
𝐷

cos𝛼2
�1 +

𝜀
2
� + 𝑤𝑚 sin

𝛼
2

(2𝑙 −
𝐷

cos𝛼2
) 

Now 



𝐿′

𝐷
=

2

cos𝛼2
�1 +

𝜀
2
� + 4

𝑙
𝐷
𝑤𝑚 sin

𝛼
2

 

And (we suppress here again second order terms such as 𝜀2, 𝑤𝑚2  or 𝑤𝑚𝜀 and do 
proper Taylor expansions): 

𝐿′
𝐷
𝐿
𝐷

=

2
cos𝛼2

�1 + 𝜀
2� + 4 𝑙

𝐷 𝑤𝑚 sin𝛼2

(1 + 𝜀
2) 2

cos𝛼2
= 1

+ 2
𝑙
𝐷
𝑤𝑚 sin

𝛼
2

cos
𝛼
2
�1 −

𝜀
2
�

= 1 +
𝑙
𝐷
𝑤𝑚 sin𝛼 �1 −
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The main result of this paper is that the increase in the number of conflict is roughly: 

𝑙
𝐷
𝑤𝑚 sin𝛼 

Let’s make a simple numerical application: aircraft is flying at 𝑣1 = 360kts and the wind 
maximal error is known to be 𝑊𝑚 = 18kts, so 𝑤𝑚 = 𝑊𝑚

𝑣1
= 18

360
= 0.05. If we want to detect 

conflicts 5 minutes before the crossing point, we have 𝑙 = 360 ∗ 5/60 = 30Nm. With a 
separation standard D=5 Nm, and a crossing angle= 𝜋/2 : 

𝑙
𝐷
𝑤𝑚 sin𝛼 =

30
5

 
18

360
 sin

𝜋
2

= 6 ∗ 0.05 ∗  1 = 0.3 

So we will detect 30% conflicts more than the number of conflicts that will really occur, if we 
want to be sure to miss none of them. This number linearly increases with the anticipation. If 
we detect conflicts 15 minutes before the crossing point, we will detect 90% conflicts more, 
almost twice the actual number of conflicts, and this even if the MTCD tool is perfect (perfect 
FMS air trajectory prediction, no unexpected maneuvers by the pilots, etc). 

 

Conclusion 
SESAR promotes the “business owned” trajectory concept, the use of contract between air 
and ground to reduce the number of conflicts, and the development of ATC tools to facilitate 
the air traffic controller’s tasks regarding conflict detection and resolution.  

Enhanced on board navigation systems and data-link facilities offer new opportunities to 
develop these tools, and to further assist controllers in their detection and monitoring tasks. 
Thus, in the years to come, the role of the controller will probably shift from a mainly tactical 
work to a more strategic planning activity. 



But even with a perfect collaboration between the board and the ground, we showed in this 
paper that future tools' efficiency will strongly rely on accurate wind prediction.  

Thus a sustained effort is necessary to increase the quality of wind modeling and to reinforce 
the relationship between people working in both fields (meteorology and civil aviation) in 
order to promote a better understanding of the needs of both of them. 
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