
Implementing an interval computation library for OCaml
on x86/amd64 architectures

Jean-Marc Alliot1 and Jean-Baptiste Gotteland1,2 and Charlie Vanaret1,2

and Nicolas Durand1,2 and David Gianazza1,2

1 Background
Interval arithmetic has been used in computer science and numerical
computations for years [5]. Its main goal was to create computing en-
vironments where the exact value of a computed result lies with cer-
tainty within an interval, which might be paramount for some critical
applications.

Floating point units (FPU) only work with a fixed size for the man-
tissa of the operands, and numerical errors are unavoidable. For ex-
ample, 1/3 rounded to two decimals is neither 0.33 nor 0.34 but
the exact value lies within the interval [0.33, 0.34]. Most FPU are
compliant with the IEEE-754 standard regarding numerical com-
putations. The most widely used format is the IEEE-754 double
precision. This format gives around 16 decimal digits of precision.
In this context, numerical errors might seem insignificant or irrele-
vant. However, the accumulation of many numerical errors with ill-
conditioned functions can lead to disastrous results.

Example 1 Let us consider the function:

f(x, y) = 333.75y6+x2(11x2y2−y6−121y4−2)+5.5y8+x/(2y)

The correct result with six digits of f(77617, 33096) is −0.827396.
However, when computed with an IEEE-754 compliant x87
FPU in double precision, the result is −1.180592.1021 with
OCaml 3.12 compiler. Interval arithmetic yields a lower bound
(−5.902958.1021) and an upper bound (5.902958.1021), which im-
mediately points out the ill-conditioned nature of the function at this
point.

Over the last 30 years, interval arithmetic has expanded to new
grounds; since Rokne and Ratschek book [2], interval arithmetic has
been widely used in global optimization. Branch and bound algo-
rithms associated with interval arithmetic are now used to find global
optima of deceptive functions (such as Griewangk and Michalewicz
functions) with up to 20 variables.

2 Fundamentals of interval arithmetic
The IEEE-754 standard requires that every FPU is able to make any
elementary computation in four rounding modes: toward +∞ (upper
rounding), toward 0, toward −∞ (lower rounding) and toward the
nearest representable number (nearest rounding). It is thus quite easy
to implement the most basic functions of interval arithmetic with
proper roundings of both endpoints. The addition of two intervals

1 Institut de Recherche en Informatique de Toulouse, name.surname@irit.fr
2 Laboratoire “Mathématiques Appliquées et Informatique” de l’ENAC

is for example defined by: [a, b] + [c, d] = [a+low c, b+up d]. Mul-
tiplication and division are slightly more complex tasks that require
to take into account the position of the intervals relatively to 0. For
example, if a < 0 < b, we have 1/[a, b] = [−∞, 1/a]∪ [1/b,+∞].
As the second member of the equation has to be reduced to a single
interval, we simply have: 1/[a, b] = [−∞,+∞] There is thus a loss
of information, which is unavoidable.

The usual real-valued functions (cos, sin, arcsin, log, etc.) can
also be extended to interval arithmetic. The extension is trivial for
monotonic functions (such as exp(x)), as the image of interval [a, b]
by exp is simply [explow(a), expup(b)]. Computing interval exten-
sions of periodic functions such as sin(x) or cos(x) is a much more
complex task. When elementary functions are defined, more complex
functions can be computed by composition.

3 Existing implementations

There are numerous interval arithmetic implementations with various
bindings to different languages such as Profil/BIAS (a C++-class li-
brary developed in 1993 at the Hamburg University of Technology),
a template class for interval arithmetic in the Boost C++ libraries,
Gaol (a C++ interval arithmetic library that implements operators for
interval constraint programming), MPFI [6] (a multi-precision inter-
val arithmetic library for C or C++), and the SUN interval arithmetic
implementation for Fortran 95 or C++ [4]. There is a proposal to have
interval arithmetic integrated to the standard C++ language [1] and
an IEEE interval standard is currently under development.

4 Bindings to the MPFR/MPFI libraries

We chose to develop bindings to the MPFR/MPFI libraries since
these libraries provide a unique feature: the possibility to work with
an arbitrary precision. This feature is extremely valuable when pre-
cision (and not time) is paramount. The MPFR library is a multi-
precision arithmetic library which implements a very large number of
functions on arbitrary-precision floating-point numbers. We only im-
plemented the bindings to MPFR functions which are needed when
using the MPFI bindings (more complete MPFR bindings are avail-
able in the APRON library). The MPFI library uses the MPFR li-
brary to provide arbitrary-precision floating-point interval arithmetic.
OCaml bindings exist for almost all MPFI functions with almost no
syntactic sugar. Thus, an interval is an opaque structure that must be
allocated with the init function prior to use. After allocation, it can be
used and modified in place. The semantic of the functions is thus not
functional whatsoever. Marshalling of these objects is not possible
yet.

5 A native implementation
The MPFR/MPFI library is widely used, but is quite slow due to its
versatility. We thus decided to implement a faster library limited to
double-precision floating-point interval arithmetic. There were two
possibilities: developing bindings to an existing library, or imple-
menting the library by ourselves. From an overview of the existing
implementations, we concluded that developing bindings to these li-
braries (usually in C++) would be tedious and would require the use
of an extra layer that would slow us down. We chose to directly im-
plement the library in assembly language for the lower-level func-
tions, and in OCaml for the higher-level functions. The latter imple-
ments the “logical” part of the function, while the former implements
the elementary function computations for both rounding modes. The
target architecture was the Intel processor family (x86/amd64), on
the three main operating systems (Windows, Linux and Mac OS X).
We decided to use a functional semantics for all functions: imple-
mented operators such as $+, $-, $*, $/ extend standard operators to
interval arithmetic. This allows us to write let a = b $+ c with a, b
and c being interval objects. Implementations choices regarding in-
clusion functions and throwing exceptions are based on the following
properties: Let f be a function and F its extension to interval arith-
metic, then

• ∀x ∈ [a, b], if f(x) is defined then f(x) ∈ F ([a, b])
• if {f(x) | x ∈ [a, b]} is empty then F ([a, b]) raises an exception

All the elementary operations with both rounding modes are avail-
able via the Fpu module of our library, while the interval function
extensions are available in the Interval module.

We had to deal with some unexpected problems. The x87 is sup-
posed to return the nearest value, the upper and lower bounds for each
elementary operation, but this is not always the case: some functions
such as cos, sin or tan are not properly implemented everywhere.
For example, we computed cos(a), with a = atan2_low 1. 0. and
with the following cosine implementations:

1. the MPFI library (with 128-bit precision),
2. the x87 in round-toward −∞ mode,
3. the x87 in nearest mode (default value for the C and OCaml li-

braries on 32-bit Linux),
4. the x87 in round-toward +∞ mode,
5. the SSE2 implementation (default value for the C and OCaml li-

braries on 64-bit Linux):

We got the following results: cosx87low(a) < cosx87(a) =
cosx87high(a) < cosMPFI(a) < cosSSE2(a), so the upper bound
(4) computed by the x87 is clearly incorrect, as it is lower than the
correct value computed by the MPFI library. The value computed
by the SSE2 (5) is much more precise than the one computed by
the x87. However, it is unfortunately impossible to get upper and
lower bound values with the SSE2 implementation, and we have no
other choice but to use the x87 for computing these (sometimes in-
correct) bounds. The problem here is that the value computed by
the standard C-lib (or OCaml) cos(x) function does not always lie
within the lower bound/upper bound interval returned by the x87
functions. This can be very prejudicial when executing branch and
bound algorithms where the mid-value is expected to lie within the
lower/upper interval. We solved this issue by rewriting quite effi-
ciently the trigonometric functions in assembly language. With our
new implementation, the lower and upper bounds are properly set
and they are always lower (resp. higher) than the values computed
by the standard cos(x) functions on 32 and 64-bit architectures.

Values returned by the standard (C-lib or OCaml) cos(a), sin(a)
or tan(a) functions remain different on 32 and 64-bit architectures.
In order to obtain the same behavior on both architectures, the fcos,
fsin or ftan functions from module Fpu can be used. They always
return the same values on all architectures, and they can trans-
parently replace standard functions by using the Fpu_rename or
Fpu_rename_all modules.

6 Performance issues
Figure 1 from [3] presents some comparison results of classical in-
terval libraries, including MPFI. The scale is logarithmic.

Figure 1. Comparison of standard interval libraries

Table 1 is a comparison of MPFI with our native implementation
on 106 operations. The third column is the logarithm of the ratio of
the execution times of both implementations.

Op MPFI Nat log(M/N) Op MPFI Nat log(M/N)
+ 0.124 0.076 0.21 log 2.696 0.096 1.44
- 0.172 0.068 0.40 exp 4.568 0.224 1.31
* 0.148 0.088 0.23 cos 3.544 0.136 1.42
/ 0.240 0.088 0.43 sin 3.868 0.136 1.45

Table 1. Comparison of MPFI bindings and native implementation

From the above figure and table, we can compare our native im-
plementation with some of the fastest implementations of interval
arithmetic. We can observe that on some functions (add, sub, sin,
cos), our library is on par with Filib, while on some other functions
such as log it is even faster. We have also to remember that the native
implementation suffers from its functional semantics, which creates
at each operation a new interval object, while the MPFI bindings cre-
ate the interval objects once and for all before the computation and
modify them in place.

References
[1] Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion, ‘A pro-

posal to add interval arithmetic to the c++ standard library’, Technical
Report N1843=05-0103, INRIA, (2005).

[2] New computer methods for global optimization, H. Ratschek and J.
Rokne, Ellis-Horwood, 1988.

[3] R. Dabrowski and B. Kubica, ‘Comparison of interval c/c++ libraries in
global optimization’, Technical report, Warsaw university, (2009).

[4] SUN Microsystems, C++ Interval Arithmetic programming manual,
SUN, Palo Alto, California, 2001.

[5] R.E. Moore, Interval Analysis, Prentice Hall, NJ, 1966.
[6] N. Revol and F. Rouillier, ‘Motivations for an arbitrary precision interval

arithmetic and the MPFI library’, Reliable computing, 11(4), (2005).

	Background
	Fundamentals of interval arithmetic
	Existing implementations
	Bindings to the MPFR/MPFI libraries
	A native implementation
	Performance issues

